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Shear-flow instability in a rotating fluid
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The instability of a forced, circular shear layer in a rotating fluid has been studied
experimentally and numerically. The experiments were performed with a shallow layer
of water in a parabolic tank, in which it is possible to apply radial pumping and to
model a geophysical beta-effect. A shear layer was produced by a secondary rotation
of the central part of the parabolic vessel. In most experiments, the shear layer
takes on the appearance of a sequence of vortices, the number of which decreases
with increasing strength of the shear. A beta-effect may prevent the formation of a
steady vortex chain. Continuous pumping of fluid from the periphery to the centre
or vice versa leads to an azimuthal velocity field corresponding to a point vortex.
This azimuthal flow appears to stabilize the shear flow if it is opposite to the inner
rotation, and to be destabilizing otherwise.

The numerical investigations consist of the solution of the quasi-geostrophic equa-
tion in a geometry similar to the experimental situation and with a term modelling
the experimental forcing. Though the numerical computations are based on a two-
dimensional model, they capture the essential features of the instability and the
resulting vortex structures.

1. Introduction
The present paper concerns the nonlinear evolution of a circular shear layer in a

rotating fluid. This subject is an extension of the symmetric split-disk problem analysed
by Stewartson (1957) to a differential rotation that is still small compared with the
rotation of the background, but large enough to make the shear layer unstable.
Typically, an unstable shear layer is transformed into a number of columnar vortices
which settle down to a stable symmetric configuration, but interesting variations such
as subharmonic modulations and travelling disturbances can occur.

In 1967, Hide & Titman performed experiments with a rotating tank, equipped
with a suspended differentially rotating disk. They reported instability above a well-
defined threshold, leading to the final mode number decreasing with the amplitude
of the differential rotation. Rabaud & Couder (1983) and later Chomaz et al. (1988)
presented results obtained in a thin layer of air between two plates; the latter
paper also includes numerical results. In their study the fluid layer is thinner than
the Ekman layer thickness, so no Stewartson-type layers are involved. Nevertheless,
bottom friction is represented by a similar to that term in the equation of motion in
the case of Ekman damping, and the phenomena they observed are comparable to
those of Hide & Titman. More results about the nonlinear shear layers were presented
by Niino & Misawa (1984), in particular in relation to the initial instability. The set-up
they used was similar to that of Hide & Titman in the sense that the fluid depth is
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much larger than the thickness of the Ekman layer. In their experiments the flow is
driven by a very thin disk at the bottom of the tank, which offers the advantage of an
almost uniform depth. Their paper also includes a discussion of additional references
not mentioned here.

Nonlinear shear layers in a rotating fluid are only partially understood theoreti-
cally. Niino & Misawa (1984) applied linear stability analysis to the initially circular
shear layer, including viscous diffusion and Ekman pumping. Their theoretical results
predicted the critical Reynolds number and wavenumber, and were in good quanti-
tative agreement with experimental observations. However, the initial instability does
not always correspond to the final state. For instance, Niino & Misawa found that
according to the concept of the fastest growing unstable mode, the wavenumber (and
therefore the number of vortices) should increase with increasing Reynolds number.
However, it is an established experimental result that the number of vortices in the
final state decreases with the amplitude of the applied shear.

Progress has been made in the analysis of the shear layer with weakly nonlinear
theory (see Churilov & Shukhman 1992; Bergeron et al. 1996; and the review paper
by Dolzhanskiı̆, Krymov & Manin 1990). In this approach, the disturbance with
respect to a circular flow is expanded in a small parameter corresponding to the
nonlinearity of the system. This theory accounts for certain experimentally observed
phenomena such as hysteresis and saturation of the amplitude of the unstable wave
mode, but is limited to flows that are only slightly supercritical. If the supercriticality
is not small, the initial shear layer is transformed into vortices that start to interact
and merge, a process that leads to a final structure that is hardly related to the initial
instability (see e.g. numerical simulations by Bergeron et al. 1996). In this respect,
a scaling argument by Manin (1990) seems to provide a more adequate description.
Manin estimated the length scale of the vortices based on a Kolmogorov wavenumber
spectrum and the presence of ‘external’ friction (which may be dissipation by Ekman
pumping or the friction experienced by a very thin layer between two plates). The
scaling predicts a decrease of the number of vortices with the Reynolds number in
a way that fits well with experimental data. However, much has still to be learned
about the structure and properties of the final state, and the evolution from the initial
instability to the final state.

The evolution of a shear layer between two rotating plates with a differentially
rotating inner section is a prototype case for the behaviour of the boundary of a
forced vortex. The examples that inspired our investigations are the atmospheric
vortices present around the North and South Poles (see e.g. McIntyre 1989; Waugh
et al. 1994). Although we do not aim at a direct comparison with the geophysical
situation, we do include a latitude-dependence of the Coriolis parameter. Our goal
has been to investigate experimentally and numerically the properties of a shear layer
both with and without effects mimicking the gradient in the Coriolis parameter. The
experiments were performed in a shallow layer of water in a rotating vessel with a
parabolic shape and a differentially rotating central section. By rotating the vessel
with the right angular velocity, a water layer with a uniform vertical thickness can be
created. A slightly higher or lower angular velocity leads to a radial dependence of
the depth, which leads to similar effects as the variation in the Coriolis parameter in
the Earth’s atmosphere. Moreover, we studied the influence of an additional vorticity-
free shear flow, induced by continuous pumping of fluid from the periphery to the
the centre of the differentially rotating disk. The numerical simulations consist of
the solution of the two-dimensional vorticity equation, including a term representing
Ekman pumping (thereby accounting for the forcing by the rotation of the central
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bottom part) and a term representing the gradient in the Coriolis parameter according
to the β-plane approximation.

The further organization of this paper is as follows. In § 2, an overview of the
theoretical background is given, and the most important quantities are defined. In
§§ 3 and 4, the experiments are described and discussed. The numerical method and
the results of the simulations are treated in §§ 5 and 6. A summary of the conclusions
is given in § 7.

2. General theory and background
2.1. Rotating flows

Consider the three-dimensional Navier–Stokes equation for an incompressible baro-
tropic flow in a system rotating around a vertical axis with angular velocity Ω:

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p− 2Ω× v + ν∇2v (2.1)

where v is the fluid velocity, ν is the kinematic viscosity, and p is the pressure
relative to the background pressure field 1

2
ρΩ2r2 − ρgz due to the rotation and the

gravitational acceleration. An important limiting case is the so-called geostrophic
balance, described by an equilibrium between the pressure term −(1/ρ)∇p and the
Coriolis term −2Ω × v. It can be shown (see e.g. Greenspan 1968; Pedlosky 1987)
that in geostrophic balance, the flow field does not vary along the rotation axis, a
phenomenon known as the Taylor–Proudman theorem. First, consider a layer with
a flat bottom and a free surface with negligible curvature; in that case the flow is
strictly horizontal. By taking the vertical component of the curl of (2.1) we arrive at
an equation for the scalar vorticity ω in a rotating system:

∂ω

∂t
+ v · ∇ω = ν∇2ω (2.2)

where v and ∇ are now vectors in the horizontal plane. Although two-dimensionality
breaks down as the ageostrophic terms in reality become too large, it has been shown
by numerous experiments to be a fairly robust feature of rotating flows (see e.g.
Hopfinger & van Heijst 1993).

One important parameter is the Rossby number Ro, representing in general the
motion in the rotating system relative to the motion of the rotating system. In the
present paper, we define the Rossby number as ∆Ω/Ω, with Ω the rotation of the
system in the absence of differential rotation, and ∆Ω the angular velocity of the
differential rotation. This inner rotation is called cyclonic if Ro > 0, and anticyclonic
if Ro < 0. If the Rossby number is negligible, the advective term in (2.1) is small with
respect to the pressure gradient and the Coriolis force.

2.2. Ekman layers

The presence of friction with the bottom gives rise to an Ekman boundary layer, in
which the horizontal flow field is matched with the velocity of the bottom plate. The
Ekman layer is a viscous boundary layer, in which the geostrophic balance no longer
applies. Outside the Ekman layer, the flow is still approximately geostrophic; this
region is called the interior. The Ekman layer influences the interior by imposing a
weak vertical velocity component just outside the layer. It can be shown analytically
(Greenspan 1968; Pedlosky 1987) that if the advective term is negligible, the upward

Ekman pumping velocity is given by 1
2
δ(ω−ω∗) with δ = (ν/Ω)

1/2
being the thickness
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of the Ekman layer, ω the vorticity of the fluid in the interior, and ω∗ the vorticity
of the bottom plate. The thickness δ is often written as E 1/2H , with H the depth of
the fluid and E = ν/ΩH2 the Ekman number. The weak vertical velocity component
induced by the bottom friction leads to a stretching or squeezing of fluid columns
above the Ekman layer, and therefore to a increase or decrease in interior vorticity. For
fluid rotating with background rotation Ω, this increase is given by ∂ω/∂t = 2Ω∂w/∂z,
with w being the vertical component of the velocity. For a free-surface fluid layer
with depth H , this results in an adaptation of the vorticity equation for the interior
fluid according to

∂ω

∂t
+ v · ∇ω = λ(ω∗ − ω) + ν∇2ω. (2.3)

with λ = (νΩ)1/2/H . An important limiting case of the equation above is the decay
of a vortex due to Ekman pumping if the advective term is negligible. In that case,
Ekman pumping leads to exponential decay of the vorticity field on a time scale
τ = 1/λ. Depending on the sign of the relative vorticity, this decay is referred to as
linear spin-up or spin-down.

2.3. Stewartson layers

In the case of a differentially rotating bottom, ω∗ acts as a forcing term. A mathe-
matically tractable example of a forced vortex is the equilibrium between the Ekman
term and the viscous term if the bottom is in solid-body rotation with angular veloc-
ity Ω outside a given radius a, and in differential solid-body rotation with Ω + ∆Ω
within r = a. The discontinuity in the velocity of the fluid is then smeared out over
a layer with thickness E 1/4H , known as the Stewartson E 1/4-layer (Stewartson 1957;
Greenspan 1968). This layer lifts the discontinuity in the azimuthal velocity, but still
leaves a discontinuity in the radial component of the velocity. In reality, there appears
to be an inner boundary layer with thickness of the order of E 1/3H in which vertical
transport takes place. This E 1/3-layer falls outside the scope of a two-dimensional
modelling, and we will not consider it further.

According to the theory of Niino & Misawa (1984), the stability of the Stewartson
layer is determined by the Reynolds number

Re =
a∆Ωd

2ν
(2.4)

with d the thickness of the shear layer, given here by E 1/4H (note that our expression
for the shear width d is different from that of Niino & Misawa by a factor

√
2 because

of the difference between a free surface and a rigid lid). The Reynolds number may
be expressed in terms of Ro and E according to Re = 1

2
RoE−3/4aH−1.

2.4. Analogy with flow between parallel plates

Rabaud & Couder (1983) and Chomaz et al. (1988) performed experiments in a layer
of air between horizontal plates separated by a small distance e, forced into a shear
layer by a simultaneous differential rotation of both plates. Under the assumption
of a parabolic velocity profile between the plates, one finds that the equation for
the vorticity ω at the midplane is given by (2.3), but with λ = 8ν/e2. Based on this
equation, one would expect exactly the same dynamics as in the case of an Ekman
layer, only with different quantities determining the damping coefficient λ. However,
in the immediate vicinity of the slit, diffusion in the horizontal plane cannot be
assumed to be small, and the velocity profile between the plates will not be parabolic.
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This will have consequences for the initial instability, which can be expected to reflect
three-dimensional aspects of the basic flow.

The different physical background of the rotating split-disk problem and the flow
between parallel plates may give rise to different interpretations of the Reynolds
number. The analogy between the two situations is most transparent if one interprets
the length scale in the Reynolds number in both cases as the width of the shear
layer. Assuming that (2.3) is valid, one can calculate this width from an equilibrium
between λ(ω∗ − ω) and ν∇2ω. Neglecting the curvature of the shear layer, one finds
exponential functions on either side of the discontinuity in ω∗, decreasing on a length
scale d = (ν/λ)1/2. In the case of a Stewartson layer this gives d = E 1/4H; for flow

between parallel plates one finds d = e/2
√

2. Rabaud & Couder (1983) and Chomaz
et al. (1988) used a Reynolds number defined as a∆Ωe/ν; this corresponds to our

definition multiplied by a factor 4
√

2. In reality, however, the validity of (2.3) for
the flow between parallel plates is affected by the three-dimensional nature of the
actual velocity field close to the slit. Rabaud & Couder (1983) gave an expression
for the three-dimensional flow field if the circular curvature is neglected. A numerical
evaluation of the velocity exp (−1)-thickness in the midplane according to their
solution gives d ≈ e/2.59, slightly larger than, but close to the value following from
(2.3). Note that a more rigid definition of the Reynolds number in which all scales are
given by external parameters (such as the definition used by Rabaud & Couder (1983)
and Chomaz et al. (1988), in which the fluid depth is used as the length scale) would
be the preferred choice in one class of experiments, but it inevitably turns out to be
unsuitable in the other. In § 4, we will show experimentally that our definition with the
Stewartson-layer thickness as length scale is the most adequate for our experiments.

Comparing both types of experiments from a wider point of view, one may consider
them as extreme examples of a generic class of split-disk problems in which the
background angular velocity is allowed to vary. In our experiments, the background
rotation is so fast that the flow should be described in terms of Ekman and Stewartson
layers. In the case of Rabaud & Couder (1983) and Chomaz et al. (1988) the flow
profile between the plates is determined by viscosity, and as long as the distance
e between the plates is much smaller than estimates of the Ekman-layer thickness,
background rotation is not an issue.

2.5. Scaling law for vortex size in two-dimensional flows

In order to estimate the number of vortices in the final state, Manin (1990) proposed
a scaling argument for flows dominated by Ekman friction. In this argument, viscous
diffusion is assumed to be negligible; it is shown by Dolzhanskiı̆ et al. (1990) that
this is a good approximation for strongly nonlinear flows. The flow can therefore be
described by

∂ω

∂t
+ v · ∇ω = −λω + F, (2.5)

where F = λω∗ is considered explicitly as a forcing term. The argument relies on the
existence of an inertial range in which energy cascades from small to large scales,
characterized by a Kolmogorov spectrum E(k) ∼ ε2/3k−5/3, E(k) being the spectral
energy density, ε the cascading energy flux, and k the wavenumber. The main idea
is that vortices grow in size until their turnover time τt.o. becomes comparable with
the spin-down time τ = λ−1. This turnover time is expressed as u−1k−1, where u is
to be interpreted as E1/2k1/2, that is, a velocity u(k) typical of scale k (not a spectral
velocity density). Making use of the Kolmogorov law, this gives τt.o. ∼ ε−1/3k−2/3.
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Equating this with τ, one finds a minimal wavenumber kλ = λ3/2ε−1/2. Next, the
cascading energy flux is found as follows. At some given large wavenumber k0, energy
is added to the system. In this regime, the forcing term has the same magnitude as
the advective term, so u2

0k
2
0 = F . At the other end of the scale, dissipation takes place,

so that ε ∼ u2/τ ∼ u2/τt.o. ∼ u3k. Since the flux of cascading energy is the same over
the inertial range, this can also be written as ε ∼ u3

0k0, or, expressed in terms of the
forcing, ε ∼ F3/2k−2

0 . With the expression for the minimal wavenumber, one arrives at
kλ ∼ k0(F/λ

2)−3/4. At this point, the terminology in Manin (1990) becomes somewhat
confusing: the dimensionless parameter F/λ2 is first called the Richardson number
and further on the Reynolds number. However, F/λ2 seems to be a parameter which
is typical of (2.5), but different from both the Reynolds number and the Richardson
number. In the case of an unstable shear layer in a split-disk configuration, F/λ2 is
proportional to ∆Ω/λ, which can be written as Ro E−1/2. For fixed Ω and H this is
indeed proportional to the Reynolds number as we use it in the present paper, so
in that case the terminology used by Manin still applies. Thus, we may say that for
constant depth, the number of vortices is proportional to Re−3/4.

2.6. The beta-effect and non-uniform depth

In geophysical fluid dynamics, the atmospheric and oceanic flows are influenced by the
latitudinal gradient in the background vorticity f, usually referred to as the Coriolis
parameter. This gradient is due to the global variation of the normal component
of the angular velocity Ωe of the earth according to f = 2Ωe sin α, with α being
the geographical latitude. Thus, part of the background vorticity of the Earth is
released as relative vorticity as the fluid moves southward, and vice versa. Locally, the
Coriolis parameter f can be approximated by a linear expansion in the geographical
latitude, so f = f

0
+ βy, with y being the local northward direction. According to

this approximation, the change in relative vorticity per unit of time is −βvy , where β
is assumed to be uniform over the domain under consideration.

A similar effect is induced by a gradient in the depth of the fluid layer, since vortex
tubes moving toward the deeper part are stretched and thus gain vorticity, and vice
versa. For a layer of fluid with depth H(r) depending only on the distance r from
the rotation axis, the increase in relative vorticity per unit of time can be written as
βtopvr , with βtop = 2ΩH−1dH/dr. Apart from an opposite sign (caused by the radial
direction being outward and the geophysical y-direction being toward the North
Pole), this coincides with the β-effect in geophysics (see also Nezlin & Snezhkin 1993;
van Heijst 1994). Including the β-effect, the vorticity equation becomes

∂ω

∂t
+ v · ∇ω − βvr = λ(ω∗ − ω) + ν∇2ω. (2.6)

The left-hand side can be written in a compact way as DQ/Dt, where D/Dt is the
total derivative and Q = ω − βr the potential vorticity. If the terms on the right-
hand side are negligible, the potential vorticity is a conserved quantity for each fluid
element.

2.7. Linear stability theory

Consider the stability of a circular shear layer in a rotating fluid with azimuthal
velocity V (r) = −∂ψ0/∂r, with ψ0(r) the stream function of the unperturbed basic
flow. Niino & Misawa (1984) linearized (2.3) around the basic flow according to

ψ(r, θ) = ψ0(r) + εψ̃(r)eik(rθ−ct) (2.7)
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and evaluated the imaginary part of the complex phase velocity c; the flow becomes
unstable if Im c < 0. Briefly summarized, they found that the flow becomes unstable
above a critical Reynolds number for a specific wavenumber k. As the Reynolds
number is increased, the range of wavenumbers for which the flow is unstable
becomes wider, and the fastest growing unstable mode shifts to a larger wavenumber.

If the forcing profile is continuous, the viscous term can be shown to be much
smaller than the Ekman damping term (Dolzhanskiı̆ et al. 1990), and may be neglected
in the stability analysis. As was pointed out by Niino & Misawa (1984), neglecting
viscous diffusion is not acceptable in the case of a discontinuous shear forcing, since
in that case a Stewartson layer is formed in which there is an equilibrium between
viscous diffusion and Ekman pumping. However, in the experiments in the present
paper the final shear layer becomes much wider than the initial Stewartson layer.
Therefore, ignoring viscous diffusion may give an indication of the stability properties
of the final, averaged shear layer. If the viscous term is dropped, one finds the
Rayleigh stability equation for inviscid flows, generalized with a term to account for
Ekman damping:

ψ̃′′ +
1

r
ψ̃′ +

(
V ′′ + V ′/r − V/r2

V − c− iλk
− k2

)
ψ̃ = 0. (2.8)

In the same way as from the original Rayleigh equation, one can derive that in order
to be unstable, the flow has to fulfil V ′′+V ′/r−V/r2 = 0 somewhere in the domain.

The stability of the shear layer in the presence of a β-effect using this approximation
has been studied by several authors, see Manin (1989) and references therein. Again,
one may use an analogous stability analysis based on harmonic modes. By substituting
(2.7) in (2.6), one finds that V ′′ + V ′/r − V/r2 − β = 0, which irrespective of the sign
of β is a stronger constraint than V ′′+V ′/r−V/r2 = 0. Although this result does not
lead to clear-cut conclusions for small β, it is indicative of a stabilizing influence of the
β-effect on the shear flow. More detailed information on the influence of a β-effect on
the stability of two specific shear profiles was presented graphically by Manin (1989).
The result for both cases is a decrease in the range of unstable wavenumbers, and
a reduction of the growth rate of the unstable modes. Thus, we expect the β-effect
to have a stabilizing effect on the shear flow, in the sense that the vortices remain
smaller than on an f-plane.

In addition to these shear instabilities, there is a possibility of three-dimensional
instabilities. In this respect, one is reminded of studies of the instability of freely
evolving vortices in a rotating fluid (Kloosterziel & van Heijst 1990; Beckers & van
Heijst 1998), to which the forced flow in the present paper bears a certain resemblance.
Theoretical aspects of this subject were studied recently by Leblanc & Cambon (1997),
who derived a generic criterion for three-dimensional instabilities in a rotating fluid.
However, three-dimensional instabilities were never observed in our experiments.

3. Experimental set-up
The experiments were performed in a shallow layer of water in a rotating parabolic

tank. An overview of the set-up is shown in figure 1. The shape of the parabolic
tank corresponds to the free surface of a liquid rotating at Ω0 = 7.53 rad s−1; this
value will be referred to as the nominal angular velocity Ω0. Having a central depth
of 23 cm, the parabolic surface would fit in a cylinder with radius 28 cm and height
23 cm. A circular shear layer could be created by a differential rotation of the central
part of the tank. This polar section has a radius a = 10 cm; the width of the slit
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Slip rings

Camera

Transparent lid

UV lamps

Outer volume

Motor for inner part

Cog belt

Motor for outer part

Cog beltInlet for centre hole

Inlet for outer volume

Equipment support

Inner part

Rotary stage

Outer part

Centre hole

Figure 1. The experimental set-up.

between the inner disk and the main part of the tank is 0.3 mm. In the middle of
the inner disk there is a hole with radius 1.5 cm. This hole is connected to a vertical
tube outside the rotating system, so it was possible to measure the central depth of
the fluid layer while the tank was rotating. A circulation system with controllable
flow rate makes it possible to sustain a flow from the periphery of the paraboloid
to the centre, or vice versa. Both the motors driving the main and the differential
rotation are accurate to 0.1%. For the present study, the paraboloid has been covered
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with a flat transparent lid in order to eliminate possible friction with the air in the
laboratory. The paraboloidal section is surveyed by a video camera mounted in the
rotating frame and connected to the equipment in the laboratory via slip rings. The
rotating fluid layer is illuminated by an ultraviolet light tube, mounted below the
rigid lid. An ultraviolet filter was placed in front of the lens of the video camera, so
that only fluorescent light is recorded.

The experiments were performed with a fluid depth varying between 5 and 60 mm.
Even for the shallowest layer, this is much larger than the thickness of the Ekman
layer, which is of the order of 0.3 mm. In most cases we used a depth of either 10, 20
or 40 mm, corresponding to values for the Ekman number of 1.3× 10−3, 3.3× 10−4

and 8.3×10−5, and spin-up times given by 3.6, 7.3 and 15 s, respectively. The angular
velocity of the inner disk was chosen in the interval from −2.2 to 2.2 rad s−1, so the
Rossby number had values between −0.29 and 0.29. Note that in this paper, we are
using the vertical depth, not the depth perpendicular to the local sloping bottom of
the parabolic vessel; the difference between these points of view is discussed in § 4.4.
If the vertical depth is not uniform, such as in the case of a very fast inner rotation,
we always refer to the depth at the edge of the inner disk.

The experiments with β-effect were performed at a background rotation different
from the nominal angular velocity: Ω = 7.33 rad s−1 (β < 0) or Ω = 7.73 rad s−1 (β >
0). In both cases the depth at r = a was equal to either 1 or 4 cm. In the geophysical
situation, fluid moving away from either the North or the South Pole acquires cyclonic
vorticity. Regardless of the rotation sense of the vessel, this corresponds to a layer of
water that is shallow in the centre, and deep at the periphery. Thus, the case β > 0
corresponds to the situation around either of the poles, whereas the case β < 0 has no
geophysical analogue. For convenience, we will adopt the terminology of the northern
hemisphere, on which ‘north’ corresponds to shallow, and ‘south’ to deep.

In addition, we performed experiments in which a permanent flux Q = 0.20 l min−1

was added at the centre and withdrawn from the periphery. In the absence of
differential rotation, this condition leads to a steady state with an azimuthal interior
flow, in which the entire flux is transported through an Ekman layer. One can
derive from the properties of Ekman layers that this azimuthal velocity is given by
vθ(r) = −Q/πδr, where δ represents the thickness of the Ekman layer. The method of
creating an annular shear flow by a sink or source has been used earlier, see Trieling,
Linssen & van Heijst (1997) and references therein. This azimuthal velocity field is
accompanied by a depth gradient dh/dr which we compensated for by taking a slightly
higher background rotation. From geostrophic balance and centrifugal elevation we
have g dh/dr = 2Ωvθ + (Ω2 − Ω2

0)r; equating this to zero for r = a gives an angular
velocity of 7.81 rad s−1. The depth at r = a can be calculated from the central depth
measured in the absence of pumping, by compensating for the background rotation
being slightly higher than Ω0 and the change in depth that takes place when the
pumping is turned on.

4. Experimental results
4.1. Evolution of the shear layer

Figure 2 presents an overview of the flow evolution in a typical experiment without
β-effect. Before the start of the experiment, dyed water is pumped in through the
central hole and spreads through the Ekman layer at the bottom. Immediately after
the onset of the inner rotation (t = 0), the dye is advected towards the edge of
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(a) (b)

(c) (d )

(e) ( f )

Figure 2. Evolution of an unstable shear layer to a mode three. Experimental parameters:
H = 2 cm, Re = 90, Ω = Ω0. The pictures (a–f) were taken at 0, 10, 16, 52, 70 and 112 s.

the inner disk, and the shear layer becomes visible as a concentrated circle of dye
(figure 2a). The shear layer rolls up into a large number of vortices (figure 2b),
which merge quickly into bigger ones (figures 2c and 2d). As the number of vortices
decreases, however, the merging process becomes slower. In figure 2(d), we can see a
configuration of four vortices that will undergo a transition into a mode with three
vortices. Unlike the vortex mergers earlier on, this transition takes place gradually.
The key factor in the transition mechanism is that one vortex is, or becomes, smaller
than the rest. This small vortex moves slightly faster than the other vortices in the
chain, and soon collides with the vortex in front of it. In the following interaction
process the small vortex strips off a large part of the larger vortex, while the remainder
is expelled as a new vortex, now becoming the smallest one in the chain. In figure
2(e), this small vortex can be seen at the right side. This collision process may be
repeated many times. Every time, the smallest vortex becomes slightly weaker, until
it eventually merges completely with the vortex in front of it. Thus, the transition
takes place through a non-material disturbance that may travel around the vortex
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Figure 3. Reynolds number and Rossby number at the threshold of the instability. The measure-
ments were taken at different depths; from left to right, H = 60, 40, 20, 15, 10, 7.5 and 5 mm. The
dashed lines represent and the average of the critical Reynolds number of our measurements, the
solid line the result of Niino & Misawa (1984).

chain many times. This mechanism guarantees that in the final state, all vortices have
approximately the same size (figure 2e).

4.2. The initial instability

Figure 3 shows the Reynolds number versus the Rossby number at the threshold of
the instability. Each of the data points corresponds to a certain depth. The quantity
that was measured is the highest inner velocity ∆Ω for which no wavy perturbations
in the dyed fluid were observed. The measurements confirm the result of Niino &
Misawa about the Reynolds number being the determining factor for the instability,
but the critical value we find (Rec = 16.6 ± 0.6) is higher than that of Niino & Misawa
(theory Rec = 11.6; experiment Rec = 11.7 ± 0.6). A quantitative explanation for this
difference is still lacking, but in § 4.4 it is shown that part of the discrepancy may be
explained by the curvature of the vessel.

4.3. Properties of the final state

In figure 4, a selection of different symmetry modes found in experiments with H =
2 cm is shown. The pictures in this figure were taken at least 10 minutes after the onset
of the inner rotation; by this time any transient phenomena had disappeared. After the
settling time, we slowly pumped in a small amount of dyed fluid. This dye is advected
outwards through the Ekman layer, and is partially sucked up in the shear zone.
Figure 4 demonstrates a number of qualitative features. The first is the symmetry
of the vortex chain. In particular, the modes with n > 4 turn out to be perfectly
symmetric and steady, a further indication of a distribution mechanism between the
vortices. In the experiments with n = 3 and n = 2, the flow is no longer stationary. In
the case n = 3, there were slight oscillations around a symmetric configuration; the
vortices never seemed to obtain quite the same size, and the triangular ring of dye
forming the inner boundary of the vortices showed a periodic deformation. In the
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(c) (d )

(e) ( f )

Figure 4. Stationary vortex distributions for Ω = Ω0, cyclonic inner rotation, and H = 2 cm. From
mode number 2 to mode number 9, the Reynolds number is 180, 88, 44, 28, 24 and 20 (a–f).

case n = 2, there was a periodic formation and decay of small inner vortices, showing
up in figure 4(a) as undulations in the rings of dye around the vortex cores. These
oscillations also appear for higher mode numbers if the depth is decreased. In some
cases, a stable asymmetric flow appears: just above the critical value for n = 2, the
two anticyclonic vortices may have a different shape, and only one of them may show
oscillations whereas the other one is steady (see figure 5). This asymmetry disappears
if the speed of the inner disk is increased, and returns if the inner disk is slowed down
again. Figure 6 shows an experiment with an anticyclonic inner rotation. In that case
the dye distribution becomes more diffuse than for cyclonic inner rotation, and the
picture has the appearance of a photographic negative of the corresponding mode
three in figure 4. At moderate values for the inner rotation, there seems to be little
difference between cyclonic and anticyclonic motion.

Another observation in figure 4 is that the dye is concentrated along the periphery
of the vortices and in the eye-like rings in the vortex centres. Seen from above, these
rings always touch the slit. Figure 7 shows a close-up of a ring taken with a camera
looking down obliquely at the shear layer, shortly after a small amount of dye has
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Figure 5. Asymmetric final state for Ω = Ω0, H = 4 cm, and ∆Ω = 0.73 rad s−1. The asymmetry
is persistent; one of the satellites is a smooth vortex, whereas the other one is a cluster of smaller
structures that are continuously being formed and destroyed.

Figure 6. Stationary mode three for Ω = Ω0, anticyclonic inner rotation, and H = 2 cm.
The Reynolds number is −100.

been added through the central hole. Dye is visible at the edge of the vortex and in
the eye-like ring, which now appears as a half-torus. In the course of the experiment,
this half-torus expands upward, outward as well as inward, finally resulting in a dyed
volume with a cylindrical shape. In a top view, the ring gradually becomes thicker,
until the dark part of the eye disappears and a more or less uniformly dyed patch
remains. Thus, the following qualitative picture appears. As a property of the two-
dimensional vorticity equation, the centres of the vortices are located slightly outside
r = a, the radial position of the slit. Because of the singular negative vorticity of the
differentially rotating bottom, dye is sucked up by the shear layer. Apparently, the dye
appears only at places where there is no velocity component across the slit. This effect
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Figure 7. Close-up of a steady vortex, made with a camera in a tilted position looking down onto
the vortex at an angle of approximately 45◦ with the vertical. Experimental parameters: depth 4 cm,
Ω = 7.53 rad s−1, ∆Ω = 0.58 rad s−1. The flow field is of mode three. The slit is visible as a faint
curve from the lower right corner of the picture to the centre of the vortex.

lies outside the scope of linear Ekman-layer theory; the strong velocity gradients in
the horizontal plane at the position of the slit in combination with cross-flow over
the slit provides a situation where the advective term cannot possibly be small. In any
case, the dye is observed to leave the Ekman layer only between the vortices (leading
to contour lines around the vortices), and at one point inside each vortex (leading
to the dyed rings). As in a Stewartson layer, the dye has to move down again in a
local circulatory motion. As a consequence, the central rings are at first very thin, but
gradually grow into a torus and later on into a filled column. If the experiment is
repeated with anticyclonic inner rotation, the vortices are cyclonic, and the secondary
flow is reversed. The vortices then expel dye, and their centres become visible as dark
rings against a dyed background (see figure 6).

Figure 8 shows the number of modes in the final state versus the Reynolds number.
For very small Reynolds numbers, the initial shear layer is stable. Every experiment
leading to an unstable shear layer was carried out at least three times; the experiments
that yielded many vortices even four or five times. The data show that the number of
vortices is highest just beyond the critical Reynolds number, and decreases to two as
the Reynolds number is increased. This observation is in agreement with the scaling
law of Manin (1990), according to which the size of vortices should be proportional
to Re3/4. A best fit of the corresponding Re−3/4-dependence on the number of vortices
has been included in figure 8, and the agreement with the data appears to be good.

Furthermore, the figure shows a certain overlap between the plateaux corresponding
to the different mode numbers. Apparently, an experiment with a certain combination
of parameters may have different stable solutions, an observation also made by
Rabaud & Couder (1983) and Niino & Misawa (1984). In fact, there is more
hysteresis in the vortex chain than is apparent from figure 8. If the inner rotation
is increased or decreased slowly starting from a certain mode number, the flow may
remain longer in that mode than the horizontal plateaux in figure 8 suggest. The
horizontal parts do not indicate the stability boundaries of the modes concerned, but
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Figure 8. Number of modes versus Reynolds number for H = 1 cm (dots)
and for H = 4 cm (crosses); Ω = Ω0 = 7.53 rad s−1 (β = 0).

rather the most likely outcome of the experiment as the inner disk is set into rotation
instantaneously.

For a given Reynolds number, the number of vortices decreases strongly with
increasing depth of the fluid layer. Since the depth enters the vorticity equation
through the Ekman number, this phenomenon has to be related to the amount of
damping of the two-dimensional flow above the Ekman layers. According to the
measurements, a weaker damping increases the extent to which merging in the vortex
chain takes place. Oppositely, at smaller depths the number of vortices becomes larger.
In experiments with a fluid depth of 5 mm, we observed as many as 20 vortices.

4.4. Axial alignment of the vortices

When the bottom of a fluid layer has a local inclination with respect to Ω (such as
in the experiments in the present paper, or at any location on the Earth except for
the Poles), two viewpoints can be taken.

The first is to take a Cartesian coordinate system with the x- and y-axes in the
local bottom plane and the z-axis in the normal direction. One then decomposes the
angular velocity along these axes, and assumes that the velocity field is uniform over
the fluid depth, measured in the z-direction. In this way it is easier to impose boundary
conditions if calculations are made, but one abandons the Taylor–Proudman theorem
for the weaker shallow-water assumption.

The second viewpoint is to use a coordinate system with the z-axis in the direction
of Ω. The observation we would like to report here is that our experiments seem to
favour this view; dye visualizations performed with a fluid depth of 4 cm indicate that
vortical structures are aligned with Ω, not with the local normal to the bottom plane.
For a very shallow fluid layer and for small Rossby number, these two viewpoints
lead to the same result with respect to the β-effect (or, in fact, any higher-order
topography/background variation). Consider a layer of fluid with a depth that is
uniform in the direction parallel to Ω, then there is obviously no β-effect according
to the second viewpoint. In the first viewpoint, one finds two terms cancelling one
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Figure 9. As in figure 8, but for Ω = 7.33 rad s−1 (β < 0).

another: minus the gradient of the background vorticity 2Ω cos θ, and 2Ω/H times
the gradient of the local depth H , which can be written as H0 cos θ.

However, in the second picture the inclination also plays a role, since it affects
the Ekman pumping in the vertical direction. According to a calculation given by
Pedlosky (1987), the Ekman pumping velocity for a shallow layer of fluid with uniform
inclination θ is 1

2
(ν/Ω)1/2(cos θ)−1/2(ω−ω∗) in the normal direction, which corresponds

to a pumping velocity 1
2
(ν/Ω)1/2(cos θ)−3/2(ω−ω∗) in the vertical direction. This means

an increase of the Ekman pumping rate by a factor cos−3/2 θ with respect to a flat
bottom, and an increase of the Stewartson-layer thickness by a factor cos−3/4 θ. In
our case, with θ = 30◦ at the radial position of the slit, this factor is 1.11. If we
correct the critical Reynolds number found by Niino & Misawa (1984) with this
factor, we arrive at Rec = 12.9, which is closer to our measurements than the value
for a horizontal fluid layer. However, if the boundary is curved, the theory cannot
be applied, since for a general vorticity distribution it would lead to an imbalance
between fluid being pumped into and out of the Ekman layer. Without detailed
knowledge about the structure of the velocity field in three dimensions, the influence
of the parabolic curvature on Ekman suction can be discussed at most qualitatively.

4.5. Influence of the β-effect

The introduction of a β-effect affects the mode number as well as the stability of the
vortex chain. Figures 9 and 10 show the mode number versus the Rossby number
for a background angular velocity of 7.33 and 7.73 rad s−1. In general, these graphs
have the same appearance as in figure 8. For small absolute values of the Reynolds
number, the shear layer is still very thin, and therefore affected little by the β-effect.
For higher values, the β-effect becomes noticeable. On the left side of figure 9 and
on the right side of figure 10, we can see the stabilizing influence of the β-plane
expected from instability theory. However, on the opposite sides of these graphs,
the effect is not observed. On the contrary, in a certain range of values for the
Reynolds number, the vortex chain is unsteady; vortices always keep merging and
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Figure 10. As in figure 8, but for Ω = 7.73 rad s−1 (β > 0).

(a) (b)

Figure 11. (a) Steady and (b) unsteady vortex distribution for a cyclonic inner rotation for
Ω = 7.73 rad s−1 (β > 0) and Ω = 7.33 rad s−1 (β < 0), respectively. The depth at the radial position
of the central disk is 1 cm.

being formed. In figures 9 and 10, the average number of vortices for such cases
has been represented by separate symbols. A visualization of an unsteady vortex
chain showing the asymmetry connected with the instability is given in figure 11. The
instability occurs only for anticyclonic vortices in the 7.33 rad s−1 experiment and for
cyclonic vortices in the 7.73 rad s−1 experiment, that is, only for vortices travelling in
the ‘westward’ direction. As mentioned, for the inner rotation sense for which the
instability does not occur, the number of vortices is higher than in the corresponding
experiments without β-effect. This difference may also be related to the concavity
of the region enclosed by the vortex chain. More detailed insight into this matter is
provided by the numerical simulations.
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Figure 12. Comparison of the angular velocity of the vortex chain according to
the point-vortex model with experimental data.
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Figure 13. Angular velocity of the vortex chain with and without β-effect. The background angular
velocity is given for β < 0, β = 0 and β > 0 by 7.33, 7.53 and 7.73 rad s−1, respectively. The depth
above the slit is 1 cm.

4.6. Angular velocity of the vortices

Next, consider the angular velocity of the vortices around the centre of the tank. Since
the angular velocity at the bottom jumps from ∆Ω to 0 at the edge of the inner disk,
one would expect that the angular velocity of the vortices is close to 1

2
∆Ω. However,

figure 12 shows that large vortices move more slowly than this estimate, a result also
found by Rabaud & Couder (1983).

As a first attempt to explain this discrepancy, one may represent both the rotating
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inner region and the vortices of the chain by point vortices. Denoting the circulation
of the inner region by Γ , one finds that the motion of the chain vortices is purely
azimuthal, with an angular velocity given by

Ωw =
Γ

2πa2

n+ 1

2n
, (4.1)

where n is the number of chain vortices. Figure 12 shows that this result is in poor
agreement with the observed values. According to (4.1), the angular velocity of the
vortex chain, scaled with ∆Ω = Γ/2πa2, becomes higher if the number of vortices
decreases; each vortex does not ‘feel’ its own vorticity, and the fewer vortices there
are, the larger is the net vorticity of opposite sign contained by the other vortices.
However, according to our measurements and those of Rabaud & Couder (1983) in a
soap film, the scaled angular velocity actually decreases with the number of vortices.
Further analysis indicates that this discrepancy is caused by the advection of vorticity
to large radii: the central vortex is weakened, since part of its vorticity is transported
outside the vortex chain where it does not contribute to the angular velocity of the
vortices.

Figure 13 also includes measurements with β-effect. First, consider experiments with
β > 0. In this case, cyclonic vortices are seen to move faster, whereas anticyclonic
vortices move more slowly than in corresponding experiments with β = 0. This effect
is caused by a transformation from potential vorticity to relative vorticity. Due to the
circulation inside the vortices, a small excess vorticity of positive sign builds up on
the outer side of the vortices, whereas negative vorticity builds up on the inner side.
This results in a weak dipolar vorticity distribution overlying the vortices, leading to
a more strongly anticyclonic, or less strongly cyclonic motion of the vortices around
the centre. For β < 0, according to a similar argument the vortices get a velocity
component in the cyclonic direction, as can be observed in figure 13.

4.7. Influence of pumping

The shear layer appears to be influenced strongly by even a small flux added or
withdrawn at the centre. Figure 14 shows the number of vortices versus the Reynolds
number for a fixed volume flux Q flowing in the fluid layer from the centre toward
the periphery. For Re < 0, the inner rotation has the same sense as the azimuthal
flow induced by the pumping. Since the shear induced by the two forcing mechanisms
adds up, the vortices become elongated, and appear to be less coherent than without
pumping. Because of their azimuthal extent, the vortices interact more easily, so their
final number turns out to be somewhat smaller. On the other hand, for Re > 0 the
direction of the inner rotation is opposite to pumping-induced shear flow, and for a
certain combination of parameters the vortices come to a complete standstill in the
system rotating with angular velocity Ω. In this case the vortices are stabilized, and
we find more of them than without pumping. Figure 15 shows a visualization of two
vortex chains with opposite inner rotation sense. One can see that the adverse shear
leads to a pattern in which the vortices are more distinctly separated.

5. Numerical method
The evolution of an unstable shear layer, as discussed in the previous Sections, is

highly complicated, both because of the parabolic geometry and because of three-
dimensional features such as the structure of the Ekman layer. In this paper, we do
not aim at a numerical representation of these effects; instead, we consider a two-



196 J. A. van de Konijnenberg, A. H. Nielsen, J. J. Rasmussen and B. Stenum

20

15

10

0
–200 –100 0 100 200

Re

n

5

Figure 14. As in figure 8, but for pumping with Q = 0.20 l min−1 and Ω = 7.81 rad s−1.

(a) (b)

Figure 15. Visualization of vortex chains in the presence of pumping (Q = 0.20 l min−1,
Ω = 7.81 rad s−1) for Re = −42 (a) and Re = 110 (b).

dimensional model with a spectral code. This is not only easier from a computational
point of view, but also provides insight into the extent to which the experimental
observations are captured by the simplified equations.

We solved (2.6) in the vorticity–stream function formulation, given in polar coor-
dinates (r, θ) by

∂ω

∂t
+ J(ω,ψ)− β

r

∂ψ

∂θ
= λ(ω∗ − ω) + ν∇2ω (5.1)

in combination with the Poisson equation

∇2ψ = −ω. (5.2)

In these equations we have introduced the stream function

∇ψ × êz = v (5.3)
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and the Jacobian J(f, g)

J(f, g) ≡ 1

r

(
∂f

∂r

∂g

∂θ
− ∂g

∂r

∂f

∂θ

)
. (5.4)

In the experiments, the slit width between the inner disk and the outer part is so
small that the forcing can be considered as discontinuous. In the numerical simulations
we have to allow for a finite width of the shear forcing. Expressed in terms of the
azimuthal velocity v∗θ , we model the forcing by

v∗θ = 1
2
∆Ωr(− tanh [(r − a)/c] + 1) + Ω′r, (5.5)

where a is the radial position of the shear layer, and c the width of the shear.
The value of c was chosen to be approximately the same as the thickness E 1/4H
of the Stewartson layer in the stable linear case. Since in reality the shear layer is
nonlinear and develops into vortices with a much larger horizontal extent than the
original Stewartson layer, we believe that no substantial errors are introduced by the
non-zero value of c. The primed quantity Ω′ is an a priori estimate of the angular
velocity of the final vortex pattern based on the data of Rabaud & Couder. This
offset angular velocity makes it somewhat easier to follow a single vortex, but has no
further consequence for the outcome of the computation.

Equations (5.1) and (5.2) are solved in an annular geometry with inner radius r− and
outer radius r+, by means of a fully dealiased pseudo-spectral code using a Fourier
expansion in the azimuthal direction and an expansion in Chebyshev polynomials in
the radial direction, according to

ω(r, θ, t) =

M∑
m=0

N/2−1∑
n=−N/2

ωmn(t)Tm(ξ)einθ, (5.6)

where ξ is a radial coordinate scaled to the interval [−1; 1] on which the Chebyshev
polynomials are defined. The time evolution of the coefficients ωmn(t) is followed
in mode space by means of an implicit third-order Stiffly–Stable scheme, with the
nonlinear term J(ω,ψ) being evaluated in configuration space. At each time step
we thus have to solve the Poisson equation for ψ, and a Helmholtz equation for
the vorticity. In the simulations presented here we have chosen free-slip boundary
conditions, since this gives the most realistic approximation to the experimental
situation, in which there is no inner wall, and the outer wall is far away from the
shear layer. The boundary condition for ω is

∂ω

∂r

∣∣∣∣
r=r±

= 0; (5.7)

note that as a consequence of (5.7), vorticity cannot leave the system by diffusion
through the boundary. The boundary conditions for ψ depend on the Fourier mode
number being zero or not, and can be expressed as

ψn(r
±) = 0 (n 6= 0);

∂ψ0

∂r

∣∣∣∣
r=r±

= −r
±ω0(r

±)

2
. (5.8)

For further details on the numerical method, see Coutsias et al. (1994), Nielsen (1993),
and Coutsias & Lynov (1991). In all the simulations presented below we have chosen
M = N = 256, r− = 0.5 CU, r+ = 2.5 CU, a = 1.5 CU, Ω0 = 7.53 s−1, H = 0.15 CU,
e = 0.03 CU and ν = 2.25 × 10−4 CU2 s−1, where CU (Computer Unit) is a length



198 J. A. van de Konijnenberg, A. H. Nielsen, J. J. Rasmussen and B. Stenum

T =45 T =60 T =240

T =0 T =15 T =30

Figure 16. Vorticity distribution showing the formation of a mode 5. Blue corresponds to a
negative vorticity, red to a positive vorticity, yellow to zero. Parameters: β = 0, Re = 29.3.

scale used in the computation. The radial position of the shear zone in the experiment
was a = 10 cm, so all lengths are mapped such that 0.15 CU = 1 cm; the time in the
computer simulations is measured in seconds. Having chosen the parameters for the
forcing term in (5.5), and thereby determined the Reynolds number, we initiated the
computation with the basic flow, which is the solution of (2.6) with the left-hand side
equal to zero. In order to trigger the instabilities, we added a small noise contribution
localized at the shear zone. A numerical estimate of the width of the shear layer in
the initial condition has been used as the length scale d in the Reynolds number.

Note further that (2.6) is invariant to the simultaneous reversal of θ, vθ , ω and β,
so that no new solutions are found if the signs of both ω∗ and β are reversed. For
this reason we only performed simulations with anticyclonic inner rotation.

6. Numerical results
In figure 16 we show the formation of a mode 5 evolving from the axisymmetric

initial condition without β-effect. Since the Reynolds number is low the evolution is
quite smooth. In order to clarify the dynamics for this evolution we have shown in
figure 17 the spectrum of the enstrophy

Z(t) = 1
2

∫
ω2dA (6.1)

with A being the entire domain. By substituting the expansion

ω(r, θ, t) =

∞∑
n=−∞

ωn(r, t)e
inθ (6.2)

in this definition, one finds after integration over θ that

Z(t) = 1
2

∞∑
n=−∞

∫
|ω2

n |(r, t) 2πrdr = 1
2

∫
ω2

0(r, t)2πrdr +

∞∑
n=1

∫
|ω2

n |(r, t)2πrdr (6.3)
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Figure 17. Enstrophy spectrum for the simulation of figure 16.

so the enstrophy may be interpreted as a sum over different modes. We use the
expansion of the enstrophy to quantify the strengths of the different modes.

At t = 0, nearly all the enstrophy is in the zero mode, while all other azimuthal
modes contain only the initial noise contributions. The subsequent evolution can
be divided into three stages. First, during a short time, the unstable modes grow
exponentially. Then, approximately at t = 15 the amplitudes have become so large
that the advective term becomes dominant and all modes start to interact. Finally,
after t = 100, mode 5 stabilizes itself at a well-defined enstrophy level, thereby
eliminating all modes that are not a multiple of five. Thus, one may say that the
forcing term in (5.5) is feeding enstrophy to the zero mode, the nonlinear term
redistributes it to mode 5 and its higher harmonics, and from these modes enstrophy
is removed by viscosity and Ekman damping.

In figure 18 we show the onset of the instability where the flow bifurcates from
the axisymmetric state. The symbols indicate the saturated level of the maximal
radial velocity squared, max v2

r , as a function of the Reynolds number for three
values of β. For Re smaller than a well-defined critical value Rec(β), all azimuthal
modes die out, resulting in an unperturbed state. For Re slightly above Rec, the
squared amplitudes saturate at a level which grows linearly with Re, characterizing
a supercritical bifurcation. Using linear extrapolation based on the two lowest non-
zero data points, we find Rec(β = 0) = 14.5, Rec(β = 3.012) = 14.8 and Rec(β =
−3.012) = 15.0. From the spectrum we observe further that the first mode which
becomes unstable is 13 for β = 0, and 14 for β = ±3.012. Including the β-term thus
makes the basic flow slightly more stable as anticipated in § 2.7.

Figure 19 shows the observed number of modes versus the Reynolds number
together with the experimentally obtained data of figure 8. Each numerical data
point corresponds to a stable configuration of a numerical run. In general, there
is good agreement between the experimental and numerical results. The computer
simulations tend to produce a lower mode number than seen in the experiment for
the same Reynolds number, but in view of the simple model for the Ekman pumping
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Figure 18. Saturated level of the maximal radial velocity squared as a function of the Reynolds
number for β = 0, β = 3.012 and β = −3.012. The dotted lines are extrapolations based on the two
lowest non-zero data points. The critical Reynolds numbers found in this way are Rec(β = 0) = 14.5,
Rec(β = 3.012) = 14.8 and Rec(β = −3.012) = 15.0.
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Figure 19. Comparison of the experimental and numerical mode number for
H = 1 cm and β = 0.

mechanism and the fact that the parabolic curvature is not taken into account, these
results are quite acceptable.

The influence of the β-term can be seen in figure 20, which shows the final states
of nine numerical runs with different Reynolds numbers and values for β. Inclusion
of a β-effect stabilizes the flow, and we observe a larger number of vortices for
the same Reynolds number. Another observation is that the polygonal shape of the
region inside the shear layer is more pronounced for β < 0, and less for β > 0. This
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Figure 20. Vorticity distribution showing end states of nine numerical simulations. The rows
correspond to different Re = 29.3, 68.3 and 97.6; the columns correspond to β = 0, 3.012 and
−3.012 CU−1 s−1.
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Figure 21. Evolution of the vorticity distribution of an unsteady mode 3.
Parameters: Re = 97.6, β = 0.
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Figure 22. Enstrophy spectrum for the simulation of figure 21.

difference is explained by the conservation of potential vorticity ω − βr, resulting in
an increase in vorticity if a fluid element moves outward (toward a vertex of the
polygon) if β > 0, and a similar decrease if β < 0. Similarly, the undulating motion
of a fluid parcel induces a vorticity pattern outside the vortex chain. For β > 0 one
observes an excess positive vorticity at the azimuthal location of the vortices, whereas
for β < 0 positive vorticity appears between the vortices. The vorticity modulation
induced by the β-effect may partially explain the stability properties of the vortex
chain. For β < 0, the slightly concave shape of the inner region tends to separate the
vortices, and thus leads to a greater stability, and therefore also to a higher mode
number. Oppositely, the more circular inner region for β > 0 may enhance interaction
between the vortices, and contribute to the more unstable nature of the vortex chain
in that case.

Another observation in figure 20 (also made in the experiments) is that for high
Reynolds number the vortices are unequal in size and shape. Generally, for five or
more vortices present at the shear we obtain what can be called ‘pure’ modes, like that
of figure 16. In contrast, figure 20 (Re = 68.3, β = 0) shows a state with four vortices
that is not pure, since two of the vortices are perturbed. The enstrophy spectrum
shows that a mode-2 component is also excited. Another complication can be seen in
figure 20 (Re = 97.6, β = 0). In that case, the final configuration is no longer steady,
but shows an oscillatory motion in which the three vortices vary in size and shape.
This is seen in more detail in figure 21, which shows the evolution of the vorticity
distribution during one period (note that there is a slight rotation of the whole system
in the anticlockwise direction). The vortices appear to be affected by a perturbation
propagating in the anticlockwise direction around the shear layer. This is clarified
further by figure 22, which shows the enstrophy spectrum of the fully developed
mode-3 flow. All the modes appear to be oscillating with the same frequency, mode
3 and 6 having the largest amplitude, followed by perturbations consisting of mode
2 and mode 1.
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7. Conclusions
First, our measurements confirm earlier observations about the shear layer on

an f-plane. The stability of the shear layer is determined by the Reynolds number
based on the thickness of the Stewartson E 1/4-layer. At low values of the Reynolds
number, the shear layer is circular and stable, and corresponds to the case analysed by
Stewartson. Above a critical Reynolds number, the shear layer becomes unstable, and
is transformed into a number of discrete vortices. The number of vortices decreases
with increasing Reynolds number, in agreement with the scaling argument proposed
by Manin (1990). If the supercriticality is not too large, the vortex pattern is symmetric
and steady. If the Reynolds number is high, the flow may become asymmetric or
oscillatory.

Irrespective of the slope of the bottom the vortices appear to be aligned with
the rotation axis, in agreement with the Taylor–Proudman theorem, but contrary to
the rather common misconception that vortices should be perpendicular to the local
normal as a consequence of the shallow-water approximation.

A β-effect appears to be stabilizing if the inner rotation is in the eastward direction,
and leads to an unsteady vortex chain in the opposite case. A possible factor deter-
mining the difference between these situations is the shape of the region encircled by
the vortices. Coupling to Rossby waves might provide another mechanism, but on
closer inspection this seems to be unlikely; the measured velocity of the vortices al-
ways exceeds the maximum phase velocity of Rossby waves; moreover, the numerical
simulations show no evidence of propagating waves.

The continuous adding of fluid in the centre and withdrawing it at the periphery
leads to an azimuthal flow with a 1/r-profile. If the shear of this profile is adverse
to the direction of the inner rotation, the flow is considerably stabilized. In that case
the amount of vorticity in the shear layer is unaffected, but the stretching effect of
the differential rotation is counteracted by the shear of the pumping. Oppositely, if
the azimuthal flow has the same sense as the inner rotation, the vortices become
elongated, and fewer in number.
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